CONGRATULATIONS!

YOU HAVE PURCHASED THE WORLD'S FINEST MIG WELDING SYSTEM AVAILABLE EXCLUSIVELY FROM SNAP-ON TOOLS. THE SNAP-ON MUSCLE MIG SYSTEM MODEL# MM250SL IS DESIGNED AND ENGINEERED BY THE PROS FOR THE PROS. UNDER NORMAL CARE THIS SYSTEM WILL PROVIDE YOU WITH YEARS OF UNSURPASSED SERVICE AND MOST IMPORTANTLY PERFORMANCE.

FOR TECH. SERVICE, CALL TOLL-FREE 1-800-232-9353

INSTALLATION
OPERATION
MAINTENANCE

FORM WC5377

Rev. 11/98, 1/00, 8/00, 4/01
MANUFACTURER’S LIMITED WARRANTY

This equipment is warranted against defects in materials and workmanship for a period of two years from the date of purchase.

EXCEPTION: THE MIG TORCH IS WARRANTED FOR A PERIOD OF 30 DAYS FROM THE DATE OF PURCHASE.

Should the equipment become defective for such reason, the Manufacturer will repair it without charge, if it is returned to the Manufacturer’s factory, freight prepaid. This warranty does not cover: (1) failure due to normal wear and tear; (2) consumable parts, such as, but not limited to, torch contact tips, gas cups and insulating bushings; (3) damage by accident, force majeure, improper use, neglect, unauthorized repair or alteration; (4) anyone other than the original purchaser.

THIS LIMITED WARRANTY IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESS OR IMPLIED. THE MANUFACTURER SHALL NOT BE LIABLE FOR ANY INJURY TO PERSONS, INCLUDING DEATH; OR LOSS OR DAMAGE TO ANY PROPERTY, DIRECT OR CONSEQUENTIAL, INCLUDING, BUT NOT LIMITED TO, LOSS OF USE, ARISING OUT OF THE USE, OR THE INABILITY TO USE, THE PRODUCT. THE USER ASSUMES ALL RISK AND LIABILITY WHATSOEVER IN CONNECTION WITH THE USE OF THE PRODUCT, AND BEFORE DOING SO, SHALL DETERMINE ITS SUITABILITY FOR HIS INTENDED USE, AND SHALL ASCERTAIN THE PROPER METHOD OF USING IT.

SOME STATES DO NOT ALLOW LIMITATIONS ON HOW LONG AN IMPLIED WARRANTY LASTS, OR THE EXCLUSIONS OR LIMITATIONS OF INCIDENTAL OR CONSEQUENTIAL DAMAGES. SO THE ABOVE LIMITATIONS OR EXCLUSIONS MAY NOT APPLY TO YOU. THIS WARRANTY GIVES YOU SPECIFIC LEGAL RIGHTS, AND YOU MAY HAVE OTHER RIGHTS WHICH MAY VARY FROM STATE TO STATE.

WARNING

ARC WELDING CAN BE INJURIOUS TO OPERATOR AND PERSONS IN THE WORK AREA ——— CONSULT INSTRUCTION MANUAL BEFORE OPERATING.

ELECTRIC SHOCK can kill.
• Do not touch electrodes or other electrically live parts.
• Insulate yourself from work and ground.
• Install and ground machine in accordance with the National Electrical Code and local code(s). Read Operating Manual before installing or operating.
• Do not operate with protective covers, panels, or guard removed.
• Disconnect input power before servicing.
• Only qualified personnel should install, use, or service this equipment.

ARC RAYS can injure your eyes and burn skin.
• Wear correct eye, ear, and body protection while welding.

FUMES AND GASES can be dangerous to your health.
• Use enough ventilation and/or exhaust at the arc.
• Keep your head out of fumes.
• Do not breathe fumes.

READ AND UNDERSTAND THE MANUFACTURER’S INSTRUCTIONS AND YOUR EMPLOYER’S SAFETY PRACTICES.

TABLE OF CONTENTS

INTRODUCTION ... 1
DESCRIPTION, SPECIFICATIONS .. 2
CHECK LIST (CONTENTS) ... 3
INSTALLATION & ELECTRICAL REQUIREMENTS 4
OPERATION ... 8
MAINTENANCE .. 13
TROUBLE SHOOTING CHART ... 15
CONNECTING FLEXTIG OR SPOOL GUN 20
LINER INSTALLATION ... 21
PARTS BREAKDOWN - MIG TORCH 22
OPTIONS - FLEXTIG OR SPOOL GUN 24
PARAMETER CHARTS ... 25

Snap-on Tools Corporation Kenosha WI 53141-1410
INTRODUCTION

The Snap-on Tools MM250SL is a combination welding power source, remote feed unit, MIG torch and accessory package, which is designed to meet the requirements of the light to medium metal fabrication industries. The MM250SL produces fusion welds by the Gas Metal Arc Welding process (GMAW or MIG), on steel and aluminum up to "3/8" thick, using .023" through .045" steel wire and .025" through 3/64" aluminum wire with the optional MHG5-B spool gun. (optional liners must be purchased to cover given wire sizes). Heavier sections can be easily welded using slightly different techniques.

The number of controls on the unit have been reduced to assist inexperienced operators to learn MIG welding. This facilitates rapid set up for welding various thicknesses of material requiring various heat inputs. The VOLTAGE control adjusts the welding voltage and the WIRE FEED control adjusts the speed of the wire feed motor.

A SPOT WELD control switch and adjustable timer circuit provides Consumable MIG Spot Welding capabilities of light gauge steel.

THE MIG PROCESS
AS APPLIED TO THE MM250SL

The MIG process uses a bare, consumable electrode in the form of spooled wire, which is fed by a controllable speed feed unit through the cable and torch to the weld. The emerging wire and the weld are shielded by a stream of CO2, Argon, or a mixture of the two, which prevents oxidation of the molten weld puddle. The gas shield enables high quality welds to be made without the use of flux, eliminating the need for slag or flux removal after the weld is completed.

The consumable electrode wire is melted and transferred to the weld puddle by any of three arc modes; short arc transfer, globular transfer, or spray arc transfer. The MM250SL is capable of performing all modes.

SHORT ARC OR DIP TRANSFER

Short arc transfer occurs at 12 to 22 arc volts (voltage while welding), depending on wire size. Welding commences as the arc is struck and a weld pool is formed. The tip of the electrode wire dips into the pool and causes a short circuit. The short circuit current flow causes a rapid temperature rise in the electrode wire and the end of the wire is melted off. An arc is immediately formed between the tip of the wire and the weld pool, maintaining the electrical circuit and producing sufficient heat to keep the weld pool fluid. The electrode continues to feed and again dips into the pool.
SHORT ARC OR DIP TRANSFER (Cont.)

This sequence of events is repeated up to 200 times per second. Short arc transfer is suitable for positional welding. The heat input to the workpiece is kept to a minimum which limits distortion and makes possible the welding of thin sheet material.

GLOBULAR TRANSFER

Globular transfer occurs at the intermediate range of 22 to 24 arc volts, depending on wire size. As the name implies, the transfer takes place in the form of irregularly shaped globules. Globular transfer is useful in cases where a lower heat input than that of true spray is required.

Spray transfer occurs at 22 to 32 arc volts, depending on wire size. The length of the arc is held constant by the voltage available. The higher voltage and current causes the electrode wire to melt off before touching the workpiece. The molten metal crosses the gap to the workpiece in a spray form. Spray transfer is used in the down-hand position and provides higher deposition rates than short arc transfer or globular transfer.

DESCRIPTION

The MM250SL consists of a combination MIG welding power source and remote feed unit, a MIG torch with 10 foot cable, a fifteen foot feeder control cable, a fifteen foot work cable with clamp, a twenty foot power input cable, a gas regulator-flowmeter, a torch accessory kit, and a built-in cylinder rack and industrial wheel kit.

Welder controls are simple and clearly marked. The output voltage is controlled by a twelve position tap switch, providing 4 TIG and 8 MIG voltage selections. Wire feed speed is controlled by the wire speed potentiometer.

SPECIFICATIONS

PART NUMBER: MM250SL

INPUT POWER REQUIREMENTS:
Voltage 208/230
Phase single phase
Frequency 50/60 hertz
Current 33/30

NOTE
This welder draws 20 amps at 100% Duty cycle (185 amps output). A 40 amp 208 or 230 volt electrical service is required for proper arc starting and full utilization of its maximum output of 250 amps.

DUTY CYCLE - OUTPUT POWER:
(NEMA) @ 60% - 200 Amps
@ 60% - 230 Amps
@ 35% - 250 Amps

DUTY CYCLE TIME PERIOD:
10 minutes

OPEN CIRCUIT VOLTAGE:
18 - 42 volts DC

ARC VOLTAGE:
14 - 28 volts DC

WELD CURRENT RANGE:
30 - 250 amps
SPECIFICATIONS (Cont.)

REMOTE FEED UNIT
Input Voltage: 28 VAC
Wire Feed Speed Range: 50–800 IPM

DUTY CYCLE – SPOT WELDING:
30 X 2 second spots per 10 minute period

SPOT WELD TIME: 0 TO 3 seconds

WIRE TYPES: mild steel, stainless steel, aluminum, bronze, flux cored, flux cored - gasless
Recommended (for steel) ER70S-6

WIRE SIZES: .023" - .045" steel, 3/64" aluminum, (.023" - 3/64" alum. w/spool gun) .030" - .035" bronze, .035" - .045" flux cored (gas shielded or gasless)
Recommended Size: Aluminum .035
Others .030

SHIELDING GASES:
For Steel CO2 or Argon/CO2 mix
Recommended (for steel) 75% Argon/25% CO2
For Aluminum, Bronze Argon
For Stainless Steel 98% Argon/2% Oxygen
For Flux cored CO2 or Argon/CO2 mix

TORCH SPECIFICATIONS

NECK ANGLE: 60 degrees
LEAD LENGTH: 10 feet
OVERALL LENGTH: 10 feet

COOLING METHOD: gas (air)

RATING – DUTY CYCLE:
With Argon/CO2 gas 150 amps @ 100%
With CO2 gas 200 amps @ 100%

CHECK LIST

THE SNAP-ON TOOLS MM250SL INCLUDES THE FOLLOWING:

1- Combination Power Source/Remote Feed Unit
1- Cylinder Rack/Industrial Wheel Kit
1- 15 foot Feeder Control Cable assy (FCA-15).
1- 15TG10 MIG Torch with adjustable nozzle
1- 20 foot Power Input Cable
1- 15 foot Ground Cable and Clamp
1- 200PK-1 Parts Kit
1- GR-FM Gas Regulator/Flowmeter
1- Nozzle, 1/2 in. orifice (installed on MIG torch)
1- Contact Tip, for .030 in. wire (installed on MIG torch)
1- ER70S-6-30-3, Sample Spool of .030 Steel Wire

ITEMS REQUIRED FOR MIG WELDING WHICH ARE NOT PROVIDED WITH THE MM250SL

1. Full cover welding helmet with proper colored lens (shade 9 to 11 depending on operator’s preference).
2. Proper shielding gas and cylinder.
3. Leather welding gloves.
4. 208 or 230 volt single phase AC power.
5. Other personal protective equipment which may vary to match the welding being performed.
INSTALLATION

POSITIONING THE UNIT

Locate the unit adjacent to the welding area and position it so there is adequate clearance all around for ventilation and maintenance.

ELECTRICAL SUPPLY

Ensure that there is a 208 or 230 volt, single phase, 40 amp electrical supply within easy reach of the unit (see note on page 2 under specifications). The input cable supplied is 20 feet long. A 50 foot cable is an optional extra. Attach a suitable plug making sure the green wire is attached to the ground terminal of the wall plug. All wiring should be performed by a qualified electrician.

230V INPUT SELECTION

1. Factory selected no change is needed.

208V INPUT SELECTION

1. Remove the top cover.

2. Locate the contactor switch, which is mounted on top of the main power transformer (See Figure 5).

CAUTION

MAKE SURE POWER SOURCE IS UNPLUGGED BEFORE MAKING INPUT SELECTION CHANGE-OVER.

3. Attached to the power source’s contactor is one (2) two position plug which allows easy selection of input voltages of either 208 or 230 volts.

4. Remove the one (1) plug labeled 230V and connect the one (1) plug labeled 208V.

5. Reattach the top cover of the machine. Voltage input selection is now complete.

INSTALLING THE FEEDER CONTROL CABLE ASSEMBLY

1. Uncoil the cable assembly.

2. With the proper size wrench attach the gas-current fitting to the gas-current terminal (located on the front of the feed unit).
INSTALLING THE FEEDER CONTROL CABLE ASSEMBLY (Cont.)

3. Connect the control plug (female pins) onto the control receptacle (INPUT) and tighten (located on the front of the feed unit).

![Fig. 7. Cable connection to feed unit](image)

4. Plug the power plug into the positive (+) terminal (located on the front of the welding machine).

5. Connect the control plug (male pins) onto the control receptacle (OUTPUT) and tighten (located on the front of the welding machine).

![Fig. 8. Cable connection to welding machine](image)

SHIELDING GAS CONNECTIONS

1. Place a cylinder of the appropriate shielding gas in the rack at the rear of the machine and secure it with the chain provided.

2. Rapidly open and close the cylinder valve. This will purge dust and foreign matter from the valve.

CAUTION

Take care to point the valve outlet away from yourself or other people, as escaping high pressure gas may be dangerous.

![Fig. 9. Gas flow adjustment](image)

3. Attach the gas regulator – flow-meter supplied with this unit, to the cylinder valve using a suitable wrench.

(continued on following page)
SHIELDING GAS CONNECTIONS (Cont.)

NOTE
If this unit is to be used with 100% CO2 shielding gas, an optional gas regulator coupler is required.

4. Fit the gas hose from the welding machine to the regulator outlet fitting and tighten it with a wrench. Open the cylinder valve. When welding steel, the gas flow rate is 30 CFH. When welding aluminum, the gas flow rate is 40 CFH.

NOTE
The **MM250SL** must be turned "ON" and the MIG torch trigger depressed, before the gas flow rate can be adjusted.

TORCH CONNECTION

1. Open the access door of the Feed unit to its fullest extent.

2. Back out the thumb screw located on the drive assembly mounting bracket inside the machine. Insert the MIG torch into the torch panel mount on the front panel and **TIGHTEN THE THUMB SCREW**.

FITTING AND THREADING THE ELECTRODE WIRE - ALWAYS USE ER70S-6 WELDING WIRE WHEN WELDING STEEL.

1. Remove the wire spool clip from the spool hub.

2. Unpack the spool of welding wire from its protective packaging.

3. Place the spool of ER70S-6 welding wire onto the hub. The wire is fed off the bottom of the spool.

CAUTION
Look for wire protruding from the center of the spool. The protruding wire is electrically HOT during welding and must not touch the machine.

4. Replace the spool clip on the hub.

5. Unlatch the pressure roll arm and swing it open.

6. Make sure the double v-groove drive roll is installed to match the wire size. To change the wire size setting, remove the drive roll, turn it over and reinstall it on the shaft.

7. Release the wire from the spool and trim off the kinked end with wire cutters. The wire must be straight when it enters the inlet guide.

FIG. 10. TORCH CONNECTION

FIG. 11. DOUBLE GROOVE DRIVE ROLL

"B" SIDE FACING IN FOR .023" - .035" STEEL WIRES

"C" SIDE FACING IN FOR .040" - .045" STEEL WIRES AND 3/64" ALUMINUM WIRES
8. Thread the electrode wire through the inlet guide, over the feed roll and into the outlet guide. Ensure that the wire locates in the feed roll groove. Do not allow the wire on the spool to loosen.

9. Close and relatch the pressure roll arm.

10. Stretch the torch cable straight out in front of the machine making sure there are no kinks. Remove the nozzle and contact tip from the torch.

11. Turn on the circuit breaker on the front of the machine. The cooling fan will start and the "ON" indicator light will illuminate. Set the MIG/TIG VOLTAGE control switch to "MIG 3" and the WIRE SPEED control to "5". Pull the trigger on the MIG torch. The wire feed system will start and wire will be fed through the cable liner and torch. If the wire does not feed, or appears to slip, tighten the pressure roll arm adjusting nut. Feed the wire until it protrudes from the front of the torch approximately six inches.

CAUTION
Keep hands and face away from the front of the torch and do not allow the wire to contact ground. The wire is electrically HOT when the torch trigger is actuated.

12. Install the contact tip over the protruding wire and tighten it firmly using a proper size wrench. Make sure the tip is the correct size for the wire being used.

13. Install the nozzle on the torch. For steel, the contact tip should be flush or stick out up to 1/16 inch beyond the end of the nozzle. For aluminum, the contact tip should be recessed 1/8 to 1/4 inch inside the nozzle. Using wire cutters, trim off the wire so the stickout is approximately 1/4 inch for steel or 1 inch for aluminum. For aluminum, the end of the wire should be bent over so it does not JAM into the work. This is called a "scratch start".

14. For steel welding only, spray anti-spatter compound inside the nozzle and on the outside of the contact tip. For aluminum or stainless steel welding, NO anti-spatter compound can be used as it will contaminate the weld.

FIG. 12. WIRE STICKOUT - STEEL, ALUMINUM
WIRE FEED PRESSURE ROLL ADJUSTMENT

The wire feed pressure roll is adjusted to the proper setting at the factory, prior to delivery. It may be necessary to readjust the setting as components "seat in" or when changing to a different diameter wire. To check for proper roll pressure, hold the torch in one hand and the wire between two fingers of the other hand. Pull the torch trigger. If the wire continues to feed when firm pressure is applied to the wire, the pressure roll adjusting nut should be backed off until the feed rolls start to slip. If the wire will not feed with very little pressure applied, the pressure roll adjusting nut should be tightened.

OPERATION

The following operating instructions and detailed setup procedures enable an operator without previous experience to produce quality fusion welds. It is recommended that an operator without prior experience with this equipment, first practice on scrap metal of the same type and thickness as the material to be welded.

OPERATING SEQUENCE

1. Make sure that the pieces of metal to be welded are free of grease, dirt, paint and scale. Use a wire brush to remove paint and scale. Paint must be completely removed to bare metal. Grease and oil could burn and cause a fire or safety hazard. Failure to clean the metal properly will result in erratic and porous welds.

2. Install the unit as directed in the installation instructions and make sure the work clamp is firmly attached to a cleaned area on the workpiece to be welded.

3. Open the shielding gas cylinder valve. Press the torch trigger and listen for gas flow.

CAUTION

The welding wire will feed when the trigger is actuated. Take care that the wire is not directed to hit yourself or anything that is common to the work cable on the welder.

WORK (GROUND) CABLE

Uncoil the work (ground) cable and plug it into the negative (-) terminal on the machine.
The following controls are located on the front of the MM250SL.

A. GAS-CURRENT TERMINAL
Single terminal connection for gas and current from welding machine.

B. CONTROL RECEPTACLE (INPUT)
Input receptacle for wire feed voltage, trigger circuit and wire speed control from welding machine.

C. MIG/TIG VOLTAGE SWITCH
Twelve position switch provides "4" TIG (requires optional FLEX TIG) and "8" MIG voltage settings.

D. VOLTOMETER
Indicates open circuit voltage when torch trigger switch is activated and arc (welding) voltage during welding.

E. CIRCUIT BREAKER
Primary power switch and overload protection device.

F. "ON" INDICATOR LIGHT
Illuminates when the circuit breaker on the machine is "ON".

G. (-)NEGATIVE TERMINAL
Negative output terminal. The work cable is plugged into this terminal during standard welding operation. The Power plug can be inserted into this terminal for straight polarity welding on very light sheet metal, or for using flux cored gasless wire.

H. OCV/GAS PURGE
Operates the gas solenoid to purge the lines of impurities prior to welding. Pressing the switch also causes open circuit voltage to be registered on the power source voltmeter.

CAUTION
Torch is electrically HOT when switch is actuated.

I. SPOT/STITCH TIME
After the torch trigger is actuated, the timer allows the wire to feed and the gas and power to flow for the time selected. The Mode Switch must be set in "SPOT or STITCH" position for timing operation.

J. MODE SWITCH
Controls mode of operation of welding machine. "CONT." position is for normal, continuous welding operation. "SPOT" position puts the spot timer in the circuit for automatic MIG Consumable Spot Welding. "STITCH" position is used for stitch welding on very light materials.

K. WIRE SPEED
Potentiometer controls speed of wire drive motor to give wire speed of 50 to 800 inches per minute.

(continued on following page)
PROCESS SELECTION (Cont.)

L. TORCH PANEL MOUNT
Combination power output, contactor switch connection, gas supply connection, and wire feed output in a single unit.

M. CONTROL RECEPTACLE (OUTPUT)
Output receptacle for wire feed voltage, trigger circuit and wire speed control out to the remote feed unit.

N. (+)POSITIVE TERMINAL
Positive output terminal from the welder DC power source. The Power plug is inserted into this terminal for standard welding operation. The work cable can be plugged into this terminal for straight polarity welding on very light sheet metal, or for using flux cored gasless wire.

WELDING
Optimum control settings will vary according to the thickness of the metal, the type of joint, operator preference, etc. Best results can be obtained through experience with the welding machine or by making trial welds. Select some sample material of the same type and thickness as the material to be welded. Set the welding controls (using the parameter chart located on the door of the feed unit or on page 25) for optimum results using the sample material thickness and wire size being used as a starting point, weld until experience is gained using the unit.

CONTINUOUS WELDING ON STEEL
1. Trim the electrode wire to leave approximately 1/4 inch stickout beyond the end of the contact tip and install the welding nozzle. The contact tip should be flush or stick out up to 1/16 inch beyond the end of the nozzle.

2. Spray the inside of the nozzle and the outside of the contact tip with anti-spatter compound.

3. Locate the torch over the joint to be welded with the contact tip approximately 3/4 inch from the work surface.

4. Use a welding helmet with a shade 9 to 11 filter lens, depending on operator preference.

NOTE
When welding steel, the ideal position for holding the torch is inclined approximately 30 degrees towards the direction of travel. This allows the arc to be seen easily, resulting in greater control of the weld pool. Most right-handed welders move from left to right. This method, known as forehand welding, provides a gas shield for the cooling weld puddle and helps in obtaining an oxidation free weld deposit.
5. Squeeze the torch trigger. The wire will feed and an arc will be established. As the weld is deposited, move the torch slowly along the weld seam at a constant speed, while maintaining a constant arc length and a constant tip-to-work distance.

CONTINUOUS WELDING ON ALUMINUM
(Optional Nylon liner and 100% Argon shielding gas are required)

1. Trim the electrode wire, leaving approximately 1 inch stickout beyond the end of the nozzle. Bend the wire over as shown, to allow for a scratch start. The contact tip should be recessed inside the nozzle approximately 3/8 inch. This helps prevent the welding wire from burning back to the contact tip.

2. **DO NOT** spray any anti-spatter material on the torch or base metal and **DO NOT** attempt to lubricate the aluminum wire in any way. Weld contamination will occur unless the wire, base metal, torch and work area are kept clean.

3. Bring the torch nozzle to 1/2 to 5/8 inch from the workpiece. The recommended position of the torch and direction of travel for welding aluminum are shown in the following illustration.

4. Follow steps 4 and 5 as in "Continuous Welding on Steel".
MIG SPOT WELDING ON STEEL

NOTE
MIG Spot Welding is NOT recommended for aluminum.

1. Trim the electrode wire so the stickout from the contact tip will be flush with the nozzle face, and fit the spot nozzle in place.

2. Set the VOLTAGE on the welder around 20 volts, the WIRE FEED control "8", the MODE Switch to "SPOT", and the TIME control to "3", then adjust the controls to obtain a perfect weld.

3. Locate the torch on the area to be welded and press the nozzle firmly against the work to hold the metals in place.

4. Guard the eyes against stray arc flash. A weldor’s helmet is not necessary when spot welding, however, care must be taken to avoid looking at the arc.

5. Activate the torch trigger to start the weld sequence. When the timer switches off the weld current, release the trigger but maintain firm contact between the torch and work. Wait one second for the weld puddle to solidify, then move to the next spot position. If the wire "freezes" in the puddle, a quick squeeze of the torch trigger will melt it off.

6. To ascertain a good spot weld, look at the back side of the welded material. A small melt-through of approximately 1/16 inch diameter is ideal.

STITCH WELDING ON STEEL

NOTE
Stitch Welding is used for very light material.

1. Set MODE Switch to "STITCH".

2. Adjust the TIME control to set the time the welder is "on" and feeding wire. The lower the setting, the shorter the "on" time and the faster the unit cycles on and off.

3. Weld using "Continuous Welding" torch position and direction of travel.
OPERATING HINTS

BURN BACK

In the event the welding wire burns back into the contact tip:

1. Remove the nozzle from the torch.

2. Unscrew the contact tip from the gas diffuser using a pair of pliers as the tip will be very hot.

3. Free the wire from the contact tip and clean the end of the tip so the new wire will slide smoothly through the hole. DO NOT use a drill or reamer to clean the hole as they will enlarge it and cause an erratic arc. Replace the contact tip if it is badly damaged.

4. Install the contact tip in the torch and tighten it firmly with an appropriate wrench.

5. Reinstall the torch nozzle.

6. If the wire continues to burn back, check for erratic wire feed, or speed up the wire by increasing the WIRE SPEED control setting or reducing the VOLTAGE control setting.

SPATTER

Before beginning to weld and periodically during welding, the torch nozzle must be removed and the spatter (small globules of melted metal) cleared from the inside of the nozzle and the outside of the contact tip and the gas diffuser. Spatter buildup between the contact tip and the nozzle can cause a short circuit and consequently, failure of the torch or welding machine. The frequent use of anti-spatter spray will help prevent the adherence of spatter to the torch components.

NOTE

DO NOT use any anti-spatter spray when welding aluminum or stainless steel.

Restricted gas flow, holding the torch too far from the work piece, and the use of CO2 gas rather than 75% Argon - 25% CO2 will increase the spatter levels.

MAINTENANCE

To ensure that this equipment maintains its operating efficiency, the following maintenance schedule and procedures are recommended. These routines should be performed regularly by the operator.

REGULARLY – Usage and shop conditions determine frequency.

1. Remove and clean the torch nozzle and contact tip. The use of anti-spatter compound will reduce the adherence of spatter and makes its removal easier.

2. Blow out the torch liner prior to the installation of each new spool of wire. The contact tip and gas diffuser must be removed, but it is not necessary to remove the liner.

3. If the torch cable assembly is bent severely, a kink may develop in the steel liner. This can cause wire feeding problems so a new liner should be installed.

WEEKLY

1. Remove dirt and dust from the wire feed compartment. Use low pressure dry compressed air.

(continued on following page)
MAINTENANCE (Cont.)

2. Remove dirt and metal deposits from the grooves in the feed roll. If the grooves are badly worn, the feed roll should be replaced. If the pressure roll does not turn freely, it should be replaced.

3. Check all gas fittings for leaks. Tighten or repair as required.

EVERY SIX MONTHS

1. Disconnect the welder from its main power supply.

2. Remove the machine’s side panels.

3. Using low pressure dry compressed air, remove dust and dirt from all components.

4. Check for loose or frayed wiring. Particularly check welding current wire connections.

5. Replace torch liner if necessary.

RECOMMENDED CUSTOMER SPARE PARTS

The Snap-on Tools MM250SL is a machine of proven design and reliability. Following is a list of consumable items recommended as spare parts for this unit.

- contact tips M3-T30, etc.
- gas nozzles M3T-N50
- nozzle insulators M3T-B
- gas diffusers M3T-D
- steel liner (.020-.030) .. M103L-B
- steel liner (.035-.045) .. M104L-N

In the event of the failure of any part of this equipment, contact your Snap-On Tools representative for replacement parts and service. When ordering parts from Snap-On Tools Corporation, order numbers should be preceded by "CKS".

WARNING

DO NOT lift the unit when a gas cylinder is installed or attached.

DO NOT weld on any item that has a common electrical ground.

DO NOT operate the unit with the side panels removed. Overheating will occur.

DO NOT weld upon the case of the welding machine.

ONLY a qualified electrician should perform work inside the welding machine.

ALWAYS wear protective clothing, leather gloves and a full cover welding hood while welding.

DO NOT weld in a closed in area. Proper ventilation is a necessity, or a fresh air supplied hood should be worn.

WHEN welding near combustibles, a helper or "watcher" should stand by with a fire extinguisher or other fire protective device.

NEVER weld on a closed vessel or one that has contained combustibles.

IF IN DOUBT – DON’T DO IT!

BE SAFE – DON’T BE SORRY!
TROUBLE SHOOTING *(SYMBOL*)
FOR TECH. SERVICE, CALL TOLL-FREE 1-800-232-9353

The Trouble Shooting Chart is a guide in identifying and correcting possible troubles which may occur when operating this equipment.

<table>
<thead>
<tr>
<th>FAULT</th>
<th>POSSIBLE CAUSE</th>
<th>REMEDY</th>
</tr>
</thead>
<tbody>
<tr>
<td>EQUIPMENT MALFUNCTION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No main power, fan does not operate, "on" indicator light is off.</td>
<td>MM250SL switch is "OFF". (CB1) Wall breaker is "tripped". "Open" circuit breaker on MM250SL. (CB1) Loose or broken connection in power input circuit.</td>
<td>Turn switch "on". Reset wall breaker. Reset or replace breaker. Tighten or repair connection.</td>
</tr>
<tr>
<td>Main power on, torch trigger activated, no response.</td>
<td>MIG torch unplugged. Faulty trigger switch. (S1) Fault in torch cable. Loose or broken connection on wiring harness. (PLG2) Wire feed motor unplugged. (RC5) Faulty control transformer. (T2) Loose spot timer circuit board. (PC2) Defective spot timer circuit board. (CR2), (PC2)</td>
<td>Plug in MIG torch. Replace micro switch. Check torch cable for continuity. Check or repair connections. Plug in motor. Check for 28VAC output. Install properly. Replace board.</td>
</tr>
<tr>
<td>Main power on, torch trigger activated, no wire feed but contactor operates & gas flows.</td>
<td>Pressure roll arm unlatched. "Slippage" at drive rolls. Wire path restricted. 5 amp mini breaker is tripped. (CB2) Wire feed circuit board needs calibrated. Defective wire feed circuit board. (PC1) Faulty wire feed motor or connection. (M) Faulty motor relay. (CR1) Loose or broken connection.</td>
<td>Latch arm & add tension. Increase drive roll tension. See page 8. Clean path or replace torch liner. Reset or replace breaker. Calibrate wire feed circuit board. See page 19. Replace circuit board. Repair or replace faulty item. Check motor on a 12VDC battery. Sand points or replace relay. Tighten or repair connection.</td>
</tr>
</tbody>
</table>

(continued on following page)

(SYMBOL) - USE THIS IDENTIFIER, ALONG WITH THE SCHEMATIC DIAGRAM FOUND IN THE SERVICE MANUAL, FOR TROUBLE-SHOOTING PURPOSES.
TROUBLE SHOOTING (Cont.)

FOR TECH. SERVICE, CALL 1-800-232-9353

<table>
<thead>
<tr>
<th>FAULT</th>
</tr>
</thead>
<tbody>
<tr>
<td>EQUIPMENT MALFUNCTION (Cont.)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>POSSIBLE CAUSE</th>
<th>REMEDY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loose torch thumb screw. Broken or loose connection.</td>
<td>Tighten thumb screw. Check cables for continuity. Repair or tighten connections.</td>
</tr>
<tr>
<td>Unplugged or faulty power contactor switch. (W) 208/230V selector wire off.</td>
<td>Plug in or replace switch. Reattach wire.</td>
</tr>
<tr>
<td>"Opened" thermal switch. (TP1) Faulty diodes.</td>
<td>Allow unit to cool, then retry. Check diodes. See page 18.</td>
</tr>
<tr>
<td>FAULT</td>
<td>POSSIBLE CAUSE</td>
</tr>
<tr>
<td>-----------------------</td>
<td>--</td>
</tr>
<tr>
<td>"Birdnesting" (Cont.)</td>
<td></td>
</tr>
<tr>
<td>"Cold" weld puddle</td>
<td>Incorrect machine settings.</td>
</tr>
<tr>
<td></td>
<td>Incorrect shielding gas. Excessive wire stick-out.</td>
</tr>
<tr>
<td></td>
<td>Poor connections.</td>
</tr>
<tr>
<td></td>
<td>Faulty diode. (D1-D4)</td>
</tr>
<tr>
<td>Heavy spatter.</td>
<td>Incorrect machine settings.</td>
</tr>
<tr>
<td></td>
<td>Incorrect shielding gas. Excessive wire stick-out.</td>
</tr>
<tr>
<td>Porous welds.</td>
<td>No shielding gas.</td>
</tr>
<tr>
<td></td>
<td>Not enough gas flow.</td>
</tr>
<tr>
<td></td>
<td>Contaminated wire.</td>
</tr>
<tr>
<td></td>
<td>Faulty gas solenoid. (GS)</td>
</tr>
<tr>
<td></td>
<td>Incorrect electrode wire.</td>
</tr>
<tr>
<td></td>
<td>Contaminated base material.</td>
</tr>
</tbody>
</table>

(SYMBOL*) - USE THIS IDENTIFIER, ALONG WITH THE SCHEMATIC DIAGRAM FOUND IN THE SERVICE MANUAL, FOR TROUBLE-SHOOTING PURPOSES.
TESTING AND REPLACING DIODES

Silicon diodes have proven to be highly reliable. However, weld spatter build-up in the torch can short out and cause diode overload and consequent failure. The following information is provided as a guide should a failure be suspected.

Silicon diodes exhibit two main fault conditions:

1. "Open Circuit" - causes a reduction in welder output.
2. "Short Circuit" - causes the circuit breaker to trip.

If a fault is suspected, the diode may be tested as follows:

1. Remove the top connection of each diode to be tested.
2. Using a Volt-Ohm Meter set on RX1K, check for continuity through the diode in both directions. If there is no continuity in either direction, the diode is in "open circuit" condition and must be replaced. If there is continuity in both directions, the diode is in "short circuit" condition and must be replaced. If there is continuity in one direction only, the diode is functioning properly.

3. If all the diodes check out satisfactorily with the Volt-Ohm Meter, a load check must be made. This is easily accomplished using a twelve volt battery and a twelve volt light bulb connected as shown. Again test for electrical current flow in both directions. The bulb should light in one (1) direction only - not both.

CAUTION

NEVER use a "megger" or a high voltage device to test a diode.

4. When replacing diodes, it is very important that a heat conductive compound (Radio Shack #276-1372) be used where the diode makes contact with the aluminum heat sink. Do not grease the threads on the diode.
WIRE FEED CALIBRATION

Due to INPUT LINE VOLTAGE variations supplied to the welding machine. The WIRE FEED SPEED should be checked for proper operation.

TO CHECK

1. Remove any tension on the drive roll.
2. Turn the wire speed dial (on the front of the machine) to "0".
3. Activate the torch trigger.
4. The bottom drive roll should rotate very slowly (non-jerky).
5. If this proves to be true, no adjustment is required.

IF ADJUSTMENT IS REQUIRED

1. Remove the top cover assembly from the base unit.
2. Locate the printed circuit boards.
3. Referring to Figure 22, locate the trim resistor, this is located in the upper right hand corner of the wire feed PC board.
4. Turn the wire speed dial (on the front of the machine) to "0".
5. Remove any tension on the drive roll.
6. Activate the torch trigger.
7. Rotate the trim resistor, back and forth, until the bottom drive roll moves.
8. Calibrate so the bottom drive roll rotates very slowly (non-jerky).
9. If calibrated correctly the wire speed dial (on the front of the machine) should affect the speed of the drive roll from "0" thru "10".
10. Adjustment is now complete!
CONNECTING THE FLEXTIG

CHANGING FROM STANDARD MIG OPERATION TO FLEXTIG OPERATION

1. Unplug the feeder control cable plug from the control receptacle (OUTPUT) on the welder.

2. Unplug the feeder gas-current cable/power plug and the work cable from the welder's front panel.

3. Plug the FLEXTIG torch power cable into the negative (-) weld terminal and plug the work cable into the positive (+) weld terminal. This provides straight polarity current as required for TIG welding.

4. Plug the FLEXTIG torch switch cord into the welder control receptacle (OUTPUT).

5. Attach the FLEXTIG torch gas hose directly to the gas regulator/flowmeter and adjust the flow to 20 C.F.H.

 NOTE
 Pure Argon is the shielding gas to be used for TIG welding.

6. Follow the operating instructions in the FLEXTIG manual (Form WC5229).

7. To change back to standard MIG operation, reverse the procedure.

CONNECTING THE MHG5-B SPOOL GUN

CHANGING FROM STANDARD MIG OPERATION TO SPOOL GUN OPERATION

1. Unplug the feeder control cable plug from the control receptacle (OUTPUT) of the welder.

2. Plug the MHG5-B spool gun control cable plug into the welder control receptacle (OUTPUT).

3. Remove the feeder gas-current cable/power plug from the welder's positive (+) weld terminal.

4. Plug the MHG5-B gun cable fitting into the welder positive (+) weld terminal.

 NOTE
 Make sure the welder primary gas hose and regulator/flowmeter are connected to a cylinder of the proper shielding gas - 100% Argon for aluminum and 98% Argon + 2% O2 for stainless steel and 75% Argon + 25% CO2 for steel welding.

5. Follow the operating instructions in the MHG5-B manual (Form WC5268).

6. To change back to standard MIG operation, reverse the procedure.
M.I.G. TORCH LINER INSTALLATION
(steel only)

The MIG torch liner provided with the MM250SL is designed for wire diameters from .035 thru .045. If smaller wire diameters are to be fed and or there is a problem (i.e. clog, kink, etc.), a liner change is required.

Following is a step by step guide to aid in liner removal and installation.

NOTE
When removing the welding wire from the MIG torch, care should be taken to avoid the wire from uncoiling from the wire spool.

REMOVING OLD LINER

1. Remove torch assembly from the welding machine.
2. Place torch assembly on a flat surface, making sure torch is laying straight as possible.
3. Remove nozzle, bushing insulator, contact tip and gas diffuser from the front end of the torch assembly.
4. Loosen set screw located on the connector end of the torch assembly (see FIG. 24).
5. Grip the liner and gas seal firmly, then pull. The liner should easily slide from torch assembly.

INSTALLING NEW LINER

1. Remove the new liner from the package.
2. Uncoil liner and lay the liner parallel next to the MIG torch assembly.
3. Adjust the liner stickout length to 3/4" as shown in FIG. 23.

4. Install the new liner into the MIG torch assembly, until gas seal seats flush with the connector plug.
5. Tighten set screw. (Do not overtighten), refer to FIG. 24.

6. Following the diagram in FIG. 25, measure out 1 1/4" from the neck assembly and cut off the protruding liner.
7. Debur the cutoff end of the liner to insure unobstructed wire feed.

8. Install the gas diffuser and contact tip of proper wire size, tighten with a wrench.
9. Install the bushing insulator onto the gas diffuser. Spray the "O" rings with anti-spatter compound for lubrication.
10. Install the TWIST-ON adjustable nozzle and twist the nozzle during the installation. Turn to Page 7 for correct nozzle adjustment.
CONSUMABLE PARTS BREAKDOWN - 15 SERIES M.I.G. TORCH

TG STYLE FRONT END - STANDARD

<table>
<thead>
<tr>
<th>WIRE SIZE</th>
<th>CONTACT TIP</th>
<th>GAS DIFFUSER</th>
<th>NOZZLE</th>
<th>INSULATOR</th>
<th>INSULATOR O-RING</th>
</tr>
</thead>
<tbody>
<tr>
<td>.020 - .025 inch</td>
<td>M3-T25</td>
<td>M3T-D</td>
<td>M3T-N50</td>
<td>M3T-B</td>
<td>M3T-BR</td>
</tr>
<tr>
<td>.030 inch</td>
<td>M3-T30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.035 inch</td>
<td>M3-T35</td>
<td>(1-7/16" length)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.040 - .047 inch</td>
<td>M3-T45</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SPECIAL APPLICATION PARTS FOR TG STYLE FRONT END

- For Spray Arc Welding

<table>
<thead>
<tr>
<th>WIRE SIZE</th>
<th>CONTACT TIP</th>
<th>GAS DIFFUSER</th>
<th>NOZZLE ASSEMBLY</th>
<th>CUP</th>
<th>NOZZLE BODY</th>
<th>INS. BUSHING</th>
</tr>
</thead>
<tbody>
<tr>
<td>.020 - .025 inch</td>
<td>M3-T25</td>
<td>M3-D</td>
<td>M3-NA50</td>
<td>M3-C50</td>
<td>M3-NB</td>
<td>M3-B</td>
</tr>
<tr>
<td>.030 inch</td>
<td>M3-T30</td>
<td></td>
<td></td>
<td>M3-C50</td>
<td>M3-NB</td>
<td>M3-B</td>
</tr>
<tr>
<td>.035 inch</td>
<td>M3-T35</td>
<td>(1-7/16" length)</td>
<td></td>
<td>M3-C50</td>
<td>M3-NB</td>
<td>M3-B</td>
</tr>
<tr>
<td>.040 - .047 inch</td>
<td>M3-T45</td>
<td></td>
<td></td>
<td>M3-C50</td>
<td>M3-NB</td>
<td>M3-B</td>
</tr>
</tbody>
</table>

SG STYLE FRONT END - OPTIONAL

<table>
<thead>
<tr>
<th>WIRE SIZE</th>
<th>CONTACT TIP</th>
<th>GAS DIFFUSER</th>
<th>NOZZLE ASSEMBLY</th>
<th>CUP</th>
<th>NOZZLE BODY</th>
<th>INS. BUSHING</th>
</tr>
</thead>
<tbody>
<tr>
<td>.020 - .025 inch</td>
<td>M3-T25</td>
<td>M3-D</td>
<td>M3-NA50</td>
<td>M3-C50</td>
<td>M3-NB</td>
<td>M3-B</td>
</tr>
<tr>
<td>.030 inch</td>
<td>M3-T30</td>
<td></td>
<td></td>
<td>M3-C50</td>
<td>M3-NB</td>
<td>M3-B</td>
</tr>
<tr>
<td>.035 inch</td>
<td>M3-T35</td>
<td>(1-7/16" length)</td>
<td></td>
<td>M3-C50</td>
<td>M3-NB</td>
<td>M3-B</td>
</tr>
<tr>
<td>.040 - .047 inch</td>
<td>M3-T45</td>
<td></td>
<td></td>
<td>M3-C50</td>
<td>M3-NB</td>
<td>M3-B</td>
</tr>
</tbody>
</table>

SPECIAL APPLICATION PARTS FOR SG STYLE FRONT END

- For Spray Arc Welding

<table>
<thead>
<tr>
<th>WIRE SIZE</th>
<th>CONTACT TIP</th>
<th>GAS DIFFUSER</th>
<th>NOZZLE ASSEMBLY</th>
<th>CUP</th>
<th>NOZZLE BODY</th>
<th>INS. BUSHING</th>
</tr>
</thead>
<tbody>
<tr>
<td>.020 - .025 inch</td>
<td>M3-T25</td>
<td>M3-D</td>
<td>M3-NA50</td>
<td>M3-C50</td>
<td>M3-NB</td>
<td>M3-B</td>
</tr>
<tr>
<td>.030 inch</td>
<td>M3-T30</td>
<td></td>
<td></td>
<td>M3-C50</td>
<td>M3-NB</td>
<td>M3-B</td>
</tr>
<tr>
<td>.035 inch</td>
<td>M3-T35</td>
<td>(1-7/16" length)</td>
<td></td>
<td>M3-C50</td>
<td>M3-NB</td>
<td>M3-B</td>
</tr>
<tr>
<td>.040 - .047 inch</td>
<td>M3-T45</td>
<td></td>
<td></td>
<td>M3-C50</td>
<td>M3-NB</td>
<td>M3-B</td>
</tr>
</tbody>
</table>

XG STYLE FRONT END - OPTIONAL - RECOMMENDED FOR ALUMINUM WELDING

<table>
<thead>
<tr>
<th>WIRE SIZE</th>
<th>CONTACT TIP</th>
<th>GAS DIFFUSER</th>
<th>NOZZLE ASSEMBLY</th>
<th>CUP</th>
<th>NOZZLE BODY</th>
<th>INS. BUSHING</th>
</tr>
</thead>
<tbody>
<tr>
<td>.035 inch</td>
<td>M5-T35</td>
<td>M35-D</td>
<td>M35-NA62</td>
<td>M5-C62</td>
<td>M5-NB</td>
<td>M5-B</td>
</tr>
<tr>
<td>.040 - .047 inch</td>
<td>M5-T45</td>
<td>(1-15/16" length)</td>
<td></td>
<td>M5-C62</td>
<td>M5-NB</td>
<td>M5-B</td>
</tr>
</tbody>
</table>

SPECIAL APPLICATION PARTS FOR 3-5G STYLE FRONT END

LARGER ORIFICE CUP: Straight Cup (3/4" I.D.) M5-C75

SPECIAL FRONT END FOR GASLESS WIRES - OPTIONAL

- Insulated Contact Tip (Tip screw directly into torch neck - no gas diffuser is required) (1-15/16" length)

<table>
<thead>
<tr>
<th>WIRE SIZE</th>
<th>PART NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>.040 - .047 inch</td>
<td>M5HL-045</td>
</tr>
</tbody>
</table>

LINERS & LINER SEALS

FOR STEEL WELDING

<table>
<thead>
<tr>
<th>WIRE SIZE</th>
<th>TORCH LENGTH</th>
<th>ORDER NUMBER LINER W/SEAL</th>
<th>SEAL ONLY</th>
</tr>
</thead>
<tbody>
<tr>
<td>.020 - .030 inch</td>
<td>10 feet</td>
<td>M103L-B</td>
<td>M3LS-B (Blue)</td>
</tr>
<tr>
<td>.035 - .045 inch</td>
<td>10 feet</td>
<td>M104L-N</td>
<td>M4LS-N (Natural)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WIRE SIZE</th>
<th>TORCH LENGTH</th>
<th>ORDER NUMBER LINER ONLY</th>
<th>SEAL ONLY</th>
<th>HEATSHIELD ONLY</th>
</tr>
</thead>
<tbody>
<tr>
<td>.035 inch</td>
<td>10 feet</td>
<td>M103AL</td>
<td>M3-6ALS</td>
<td>M3-THS</td>
</tr>
<tr>
<td>3/64 inch</td>
<td>10 feet</td>
<td>M104AL</td>
<td>M3-6ALS</td>
<td>M3-THS</td>
</tr>
</tbody>
</table>

Snap-on Tools Corporation Kenosha, WI 53141-1410
PARTS BREAKDOWN - 15 SERIES MIG TORCH (Cont.)

TORCH NECK GROUP

<table>
<thead>
<tr>
<th>PART NO.</th>
<th>DESCRIPTION (SYMBOL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M3-101B</td>
<td>TORCH NECK *</td>
</tr>
<tr>
<td>M3-112</td>
<td>NECK INSULATOR</td>
</tr>
<tr>
<td>M3-119</td>
<td>LOCK SCREW - SWITCH HOUSING</td>
</tr>
<tr>
<td>M3-120</td>
<td>FERRULE *</td>
</tr>
<tr>
<td>M3-200B</td>
<td>SWITCH ASSEMBLY</td>
</tr>
<tr>
<td>M3-201B</td>
<td>SWITCH HOUSING</td>
</tr>
<tr>
<td>M3-202</td>
<td>SWITCH (S1)</td>
</tr>
<tr>
<td>M3-203</td>
<td>SWITCH SCREW (2 REQUIRED)</td>
</tr>
<tr>
<td>M3-211</td>
<td>TRIGGER - WITH ADJUSTING SCREW</td>
</tr>
<tr>
<td>M3-212</td>
<td>TRIGGER ADJUSTING SCREW (ONLY)</td>
</tr>
<tr>
<td>M3-213</td>
<td>TRIGGER PIN</td>
</tr>
<tr>
<td>M3-214</td>
<td>TRIGGER SPRING</td>
</tr>
</tbody>
</table>

QUICK CONNECTOR GROUP

<table>
<thead>
<tr>
<th>PART NO.</th>
<th>DESCRIPTION (SYMBOL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M3-120</td>
<td>FERRULE *</td>
</tr>
<tr>
<td>M3-301A</td>
<td>CONNECTOR HOUSING</td>
</tr>
<tr>
<td>M3-305A</td>
<td>CONNECTOR STEM *</td>
</tr>
<tr>
<td>M3-306</td>
<td>CONNECTOR PLUG - WITH SETSCREW & O-RINGS</td>
</tr>
<tr>
<td>M3-307</td>
<td>SETSCREW (ONLY)</td>
</tr>
<tr>
<td>M3-308</td>
<td>O-RING (ONLY) (2 REQUIRED)</td>
</tr>
<tr>
<td>M3-309</td>
<td>TERMINAL - CONNECTOR CONTACT (2 REQUIRED)</td>
</tr>
<tr>
<td>M3-310A</td>
<td>BOOT / CABLE SUPPORT</td>
</tr>
</tbody>
</table>

PARTS BREAKDOWN - 15 SERIES MIG TORCH (Cont.)

<table>
<thead>
<tr>
<th>PART NO.</th>
<th>DESCRIPTION (SYMBOL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1-401</td>
<td>HANDLE</td>
</tr>
<tr>
<td>M3-402</td>
<td>HANDLE SCREW (2 REQUIRED)</td>
</tr>
<tr>
<td>M3-405</td>
<td>TERMINAL - TORCH END (2 REQUIRED)</td>
</tr>
<tr>
<td>M3-406</td>
<td>TERMINAL - CONNECTOR END (2 REQUIRED)</td>
</tr>
<tr>
<td>M3-407</td>
<td>HANGING BRACKET</td>
</tr>
<tr>
<td>M1510CBL</td>
<td>10 FOOT CABLE *</td>
</tr>
<tr>
<td>M1512CBL</td>
<td>12 FOOT CABLE *</td>
</tr>
</tbody>
</table>

NOTES:

* BECAUSE SPECIAL TOOLS AND PROCEDURES ARE REQUIRED TO PROPERLY INSTALL THE CABLE ON THE TORCH NECK AND THE CONNECTOR STEM, ITEMS WITH THE ASTERICK ARE AVAILABLE FACTORY INSTALLED ONLY.

TORCH REBUILD PROGRAM

15 SERIES TORCHES CAN BE REBUILT BY THE FACTORY FOR A NOMINAL LABOR + PARTS CHARGE.
OPTIONS

FLEXTIG

TIG WELD WITH YOUR SNAP-ON TOOLS MUSCLE MIG SYSTEM (MM140SL, MM250SL)

The TIG Welding Process is used to produce the highest quality, porosity-free welds. The FLEXTIG adds TIG Welding capabilities to your Snap-on Tools MIG Welder.

The FLEXTIG is designed for Tungsten-Inert Gas (TIG) welding with Direct Current, Straight Polarity (DCSP) on steel, stainless steel, chrome-moly, copper or cast iron (18 Ga. minimum plate thickness).

THE FLEXTIG WILL NOT WELD ALUMINUM.

The FLEXTIG consists of a 200 amp, gas cooled torch with built-in gas control valve and remote on-off switch, 12-1/2 or 25 foot cable assembly and accessories required for putting the unit in service.

CONTENTS OF FLEXTIG

1 each TIG Torch with built-in valve
1 each Locking Electric Switch with cord & plug
(Installed on torch)
1 each 12-1/2 foot Power Cable with Connector
(Installed on torch)
1 each 15 foot Gas Hose with fitting
(Installed on torch)
3 each 3C116 Collet - for 1/16" tungsten
3 each 3C332 Collet - for 3/32" tungsten
2 each 3CB116 Collet Body - for 1/16" tungsten
2 each 3CB332 Collet Body - for 3/32" tungsten
2 each 3C6 Gas Cup - 3/8" orifice
6 each 3C7 Gas Cup - 7/16" orifice
2 each 3C8 Gas Cup - 1/2" orifice
1 each 300L Long Backcap
3 each 1/16" x 3" Tungsten Electrode
3 each 3/32" x 3" Tungsten Electrode

MHG5-B

ONE POUND SPOOL GUN FOR ALUMINUM MIG WELDING WITH SNAP-ON TOOLS MUSCLE MIG SYSTEMS (MM140SL, MM250SL)

The MHG5-B (Motorized Hand Gun System) is a compact, light-in-weight, easy to operate MIG welding system designed for aluminum welding. It will feed .023" Thru 3/64" diameter wire from 4 inch spools. The standard equipment cable is 25 feet in length. 35 foot and 50 foot cables are optional. The wire speed control knob is built into the gun handle.

With the following options, the MHG5-B can also be used to weld steel or stainless steel (.030"-.035" diameter wire size).

- **SN-2160K** Knurled Drive Roll for .030 - .035" steel wire
- **M5-T30 or M5-T35** Contact tip - for .030" steel wire

SPECIFICATIONS

- Part Number MHG5-B
- Gun Rating 200 Amps @ 100% duty cycle
- Wire Feed Speed Range 50 to 650 inches per minute
- Cooling Method Air (gas)

MHG5-B SYSTEM COMPONENTS

1 each MHG-5 Spool Gun (only)
1 each HGC9-25 Hand Gun Cable Assembly with fittings - 25 foot length
7 each MG-TXX Contact Tip(1 installed in gun)
2 - .030 (MG-T30)
3 - .035 (MG-T35)
2 - 3/64 (MG-T364)
1 each M35-NA62 Nozzle Assembly (Installed on gun)
1 each M35-D Gas Diffuser (installed on gun)
PARAMETER CHARTS

Guide For Setting Welder - Adjust For Best Results

GAS METAL ARC (MIG) PROCESS - DCEP (REVERSE POLARITY)

Note: Settings are approximate and may vary. Adjust for best results.

<table>
<thead>
<tr>
<th>MATERIAL TYPE</th>
<th>SHIELDING GAS TYPE</th>
<th>FLOW TYPE</th>
<th>WELDING WIRE TYPE</th>
<th>THICKNESS</th>
<th>MIG VOLTAGE</th>
<th>WIRE SPEED</th>
</tr>
</thead>
<tbody>
<tr>
<td>CARBON STEEL</td>
<td>75% ARGON</td>
<td>25% CO2</td>
<td>ER70S-6</td>
<td>.023"/.025"</td>
<td>1</td>
<td>2 1/2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>24 Ga.(.024")</td>
<td>2</td>
<td>2 1/2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>22 Ga.(.030")</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20 Ga.(.036")</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18 Ga.(.048")</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16 Ga.(.060")</td>
<td>4</td>
<td>4 1/2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14 Ga.(.075")</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12 Ga.(.105")</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1/8"</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16 Ga.(.060")</td>
<td>3</td>
<td>3 1/2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12 Ga.(.105")</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3/16"</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1/4"</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14 Ga.(.075")</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12 Ga.(.105")</td>
<td>4</td>
<td>4 1/2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1/8"</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3/16"</td>
<td>6</td>
<td>5 1/2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1/4"</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5/16"</td>
<td>8</td>
<td>9 1/2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1/8"</td>
<td>4</td>
<td>4 1/2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3/16"</td>
<td>5</td>
<td>5 1/2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1/4"</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5/16"</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3/8"</td>
<td>8</td>
<td>9 1/2</td>
</tr>
</tbody>
</table>

****Multiple Passes

TIG WELDING PARAMETERS

<table>
<thead>
<tr>
<th>VOLTAGE SETTING</th>
<th>OUTPUT AMPERAGE</th>
<th>MATERIAL THICKNESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIG 1</td>
<td>50 AMPS</td>
<td>18 GA.(.048")</td>
</tr>
<tr>
<td>" 2"</td>
<td>90 AMPS</td>
<td>14 GA.(.075")</td>
</tr>
<tr>
<td>" 3"</td>
<td>105 AMPS</td>
<td>1/8" (.125")</td>
</tr>
<tr>
<td>" 4"</td>
<td>150 AMPS</td>
<td>3/16" (.188")</td>
</tr>
</tbody>
</table>

SPOT TIME PARAMETERS

<table>
<thead>
<tr>
<th>WIRE SIZE</th>
<th>MATERIAL THICKNESS</th>
<th>VOLTAGE SETTING</th>
<th>WIRE FEED</th>
<th>SPOT TIME</th>
<th>TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>ER70S-6</td>
<td>24 GA.(.024")</td>
<td>MIG 4</td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>.030" DIA.</td>
<td>22 GA.(.030")</td>
<td>" 5"</td>
<td>4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>18 GA.(.048")</td>
<td>" 6"</td>
<td>4 1/2</td>
<td>1 1/2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16 GA.(.060")</td>
<td>" 7"</td>
<td>5</td>
<td>1 1/2</td>
<td></td>
</tr>
</tbody>
</table>

Note: Settings are approximate and may vary. Adjust for best results.

PROPER DRIVE ROLL ORIENTATION

**USE LARGE GROOVE FOR **.045" DIA. WIRE

**USE SMALL GROOVE FOR **.023" - .035" DIA. WIRE

Position adjusting collar to align drive roll groove with centerline of wire guide tube. Then secure drive roll with the washer and the nut provided.